9.1 C-C distance

The C-C distance is the distance between the cables.

In an average house the C-C distance should not exceed 15 cm if the cables are installed as part of a total heating system. If the C-C distance is higher, cold zones may form on the floor surface. The bigger the C-C distance is, the more concrete should be applied to the cables to ensure an even temperature on the floor surface.

When deviflex ${ }^{\text {TM }}$ heating cables are installed, we recommend the use of devifast ${ }^{\text {t" }}$ fitting bands. These bands are designed to ensure a CC distance at regular intervals of 2.5 cm , e.g. $10 \mathrm{~cm}, 12.5 \mathrm{~cm}, 15$ $\mathrm{cm}, 17.5 \mathrm{~cm}$, etc.

Two different formulas may be used to calculate the C-C distance:
1)

$$
\frac{\text { Sum of usable floor space }\left[\mathrm{m}^{2}\right] \times 100[\mathrm{~cm} / \mathrm{m}]}{\text { Cable length }[\mathrm{m}]}=\text { C-C distance }[\mathrm{cm}]
$$

2)

$$
\frac{\text { Output per } \mathrm{m} \text { cable }[\mathrm{W} / \mathrm{m}] \times 100[\mathrm{~cm} / \mathrm{m}]}{\text { Output per } \mathrm{m}^{2} \text { usable floor space }\left[\mathrm{W} / \mathrm{m}^{2}\right]}=\text { C-C distance }[\mathrm{cm}]
$$

Example 1

The deviflex ${ }^{\text {TM }}$ DTIP-18, $535 \mathrm{~W}, 29 \mathrm{~m}$ is to be installed in a bathroom with a usable floor space of $3 \mathrm{~m}^{2}$.

The calculated C-C distance is:

$$
\frac{3 \mathrm{~m}^{2} \times 100 \mathrm{~cm} / \mathrm{m}}{29 \mathrm{~m}}=10.35 \mathrm{~cm}
$$

If we use devifast ${ }^{\text {t" }}$ fitting bands, we can install the heating cable in this bathroom with a C-C distance of 10 cm .

Example 2

For a floor renovation we choose a deviflex ${ }^{\text {Tw }}$ DTIP-10 cable ($10 \mathrm{~W} / \mathrm{m}$). If the calculated output is $120 \mathrm{~W} / \mathrm{m}^{2}$, the calculated C-C distance is:

$$
\frac{10 \mathrm{~W} / \mathrm{m} \times 100 \mathrm{~cm} / \mathrm{m}}{120 \mathrm{~W} / \mathrm{m}^{2}}=8.3 \mathrm{~cm}
$$

The table shows the C-C distances and corresponding outputs per m^{2} :

C-C distance	$20 \mathrm{~W} / \mathrm{m}$ cable	$18 \mathrm{~W} / \mathrm{m}$ cable	$17 \mathrm{~W} / \mathrm{m}$ cable	$10 \mathrm{~W} / \mathrm{m}$ cable
5 cm	$400 \mathrm{~W} / \mathrm{m}^{2}$	$360 \mathrm{~W} / \mathrm{m}^{2}$	$340 \mathrm{~W} / \mathrm{m}^{2}$	$200 \mathrm{~W} / \mathrm{m}^{2}$
7.5 cm	$266 \mathrm{~W} / \mathrm{m}^{2}$	$240 \mathrm{~W} / \mathrm{m}^{2}$	$227 \mathrm{~W} / \mathrm{m}^{2}$	$133 \mathrm{~W} / \mathrm{m}^{2}$
10 cm	$200 \mathrm{~W} / \mathrm{m}^{2}$	$180 \mathrm{~W} / \mathrm{m}^{2}$	$170 \mathrm{~W} / \mathrm{m}^{2}$	$100 \mathrm{~W} / \mathrm{m}^{2}$
12.5 cm	$160 \mathrm{~W} / \mathrm{m}^{2}$	$144 \mathrm{~W} / \mathrm{m}^{2}$	$136 \mathrm{~W} / \mathrm{m}^{2}$	$80 \mathrm{~W} / \mathrm{m}^{2}$
15 cm	$133 \mathrm{~W} / \mathrm{m}^{2}$	$120 \mathrm{~W} / \mathrm{m}^{2}$	$113 \mathrm{~W} / \mathrm{m}^{2}$	$66 \mathrm{~W} / \mathrm{m}^{2}$
17.5 cm	$114 \mathrm{~W} / \mathrm{m}^{2}$	$103 \mathrm{~W} / \mathrm{m}^{2}$	$97 \mathrm{~W} / \mathrm{m}^{2}$	$57 \mathrm{~W} / \mathrm{m}^{2}$
20 cm	$100 \mathrm{~W} / \mathrm{m}^{2}$	$90 \mathrm{~W} / \mathrm{m}^{2}$	$85 \mathrm{~W} / \mathrm{m}^{2}$	$50 \mathrm{~W} / \mathrm{m}^{2}$
22.5 cm	$89 \mathrm{~W} / \mathrm{m}^{2}$	$80 \mathrm{~W} / \mathrm{m}^{2}$	$76 \mathrm{~W} / \mathrm{m}^{2}$	
25 cm	$80 \mathrm{~W} / \mathrm{m}^{2}$	$72 \mathrm{~W} / \mathrm{m}^{2}$	$68 \mathrm{~W} / \mathrm{m}^{2}$	

9.2 The devifast ${ }^{\text {m" }}$ fitting bands

If we want to calculate the length of a devifast ${ }^{\text {t" }}$ fitting band, we first have to determine the distance between the fitting bands.

For concrete floors where the cable is covered with 3 cm of concrete or more and the C-C distance is more than 10 cm , the distance between the devifast ${ }^{\text {t" }}$ fitting bands can be up to 1 m .

For thin floors where the cable is covered with $1-2 \mathrm{~cm}$ of self-levelling compound and the C-C distance is 10 cm or less, the max. distance between the devifast ${ }^{\text {t" }}$ fitting bands is 25 cm .

Below is the formula for calculation of $\mathrm{C}-\mathrm{C}$ distance
$\frac{\text { Sum of usable floor space }\left[\mathrm{m}^{2}\right] \times 100[\mathrm{~cm} / \mathrm{m}]}{\text { Distance between devifast }{ }^{t m}[\mathrm{~cm}]}+I_{w}[\mathrm{~m}]=$ length of devifast ${ }^{t \mathrm{~m}}[\mathrm{~m}]$
I_{w} is the length of the wall parallel to which the devifast ${ }^{\text {tm }}$ is installed.

Example

The usable floor space is $1 \mathrm{~m} \times 2 \mathrm{~m}=2 \mathrm{~m}^{2}$.

If we install devifast ${ }^{\text {tw }}$ fitting bands parallel to a 1 m wall and the distance between the devifast ${ }^{\text {t" }}$ fitting bands is 1 m , we need a fitting band with a length of:

$$
\frac{2 \mathrm{~m}^{2} \times 100 \mathrm{~cm} / \mathrm{m}}{100 \mathrm{~cm}}+1 \mathrm{~m}=3 \mathrm{~m}
$$

If we install devifast ${ }^{\text {tm }}$ fitting bands parallel to a 2 m wall and the distance between the devifast ${ }^{\text {t" }}$ fitting bands is 1 m , we need a fitting band with a length of:

$$
\frac{2 \mathrm{~m}^{2} \times 100 \mathrm{~cm} / \mathrm{m}}{100 \mathrm{~cm}}+2 \mathrm{~m}=4 \mathrm{~m}
$$

$I_{w}=1 \mathrm{~m}$

$$
I_{w}=2 \mathrm{~m}
$$

As we can see from this example, the length of a devifast ${ }^{\text {t" }}$ fitting band may vary although the area and the distance between the devifast fitting bands remain the same

